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More than 2 million people in the United States have myalgic
encephalomyelitis/chronic fatigue syndrome (ME/CFS). We performed
targeted, broad-spectrum metabolomics to gain insights into the
biology of CFS.We studied a total of 84 subjects using thesemethods.
Forty-five subjects (n= 22men and 23women) met diagnostic criteria
for ME/CFS by Institute of Medicine, Canadian, and Fukuda criteria.
Thirty-nine subjects (n = 18 men and 21 women) were age- and sex-
matched normal controls. Males with CFSwere 53 (±2.8) y old (mean±
SEM; range, 21–67 y). Females were 52 (±2.5) y old (range, 20–67 y).
The Karnofsky performance scores were 62 (±3.2) for males and 54
(±3.3) for females. We targeted 612 metabolites in plasma from 63
biochemical pathways by hydrophilic interaction liquid chromatogra-
phy, electrospray ionization, and tandem mass spectrometry in a sin-
gle-injection method. Patients with CFS showed abnormalities in 20
metabolic pathways. Eighty percent of the diagnostic metabolites
were decreased, consistent with a hypometabolic syndrome. Path-
way abnormalities included sphingolipid, phospholipid, purine, cho-
lesterol, microbiome, pyrroline-5-carboxylate, riboflavin, branch chain
amino acid, peroxisomal, and mitochondrial metabolism. Area un-
der the receiver operator characteristic curve analysis showed diag-
nostic accuracies of 94% [95% confidence interval (CI), 84–100%] in
males using eight metabolites and 96% (95% CI, 86–100%) in fe-
males using 13 metabolites. Our data show that despite the hetero-
geneity of factors leading to CFS, the cellular metabolic response in
patients was homogeneous, statistically robust, and chemically sim-
ilar to the evolutionarily conserved persistence response to environ-
mental stress known as dauer.
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Chronic fatigue syndrome (CFS) is a complex, multiorgan
system disease for which no single diagnostic test yet exists.

The disease is characterized by profound fatigue and disability
lasting for at least 6 mo, episodes of cognitive dysfunction, sleep
disturbance, autonomic abnormalities, chronic or intermittent pain
syndromes, microbiome abnormalities (1), cerebral cytokine dys-
regulation (2), natural killer cell dysfunction (3), and other symp-
toms that are made worse by exertion of any kind (4). The Institute
of Medicine (IOM) recently published an update of the diagnostic
criteria recommended for CFS (4). These are listed in Box 1.
Complex diseases like CFS are often difficult and expensive to

diagnose. Although individual tests may be affordable and pos-
sibly covered by medical insurance, many patients undergo a
diagnostic odyssey that results in substantial personal expendi-
tures that can exceed $100,000 over years of searching, absence
from the workplace, and significant reductions in quality of life.
The societal cost of CFS is estimated to be up to $24 billion
annually (4). Health care professionals are also frustrated by the
lack of an objective technology that can assist with diagnosis.
Attempts to use a small number of biomarkers, whether analytes
in blood, cerebrospinal fluid, or a handful of genetic loci, have
not yielded diagnostically useful tests for CFS.
Metabolomics has several advantages over genomics for the

diagnosis of complex chronic disease and for the growing interest

in precision medicine (5). First, fewer than 2,000 metabolites con-
stitute the majority of the parent molecules in the blood that are
used for cell-to-cell communication and metabolism, compared
with 6 billion bases in the diploid human genome. Second, me-
tabolites reflect the current functional state of the individual. Col-
lective cellular chemistry represents the functional interaction of
genes and environment. This is metabolism. In contrast, the ge-
nome represents an admixture of ancestral genotypes that were
selected for fitness in ancestral environments. The metabolic state
of an individual at the time of illness is produced by both current
conditions, age, and the aggregate history, timing, and magnitude of
exposures to physical and emotional stress, trauma, diet, exercise,
infections, and the microbiome recorded as metabolic memory (6,
7). Analysis of metabolites may provide a more technically and
bioinformatically tractable, physiologically relevant, chemically
comprehensive, and cost-effective method of diagnosis of complex
chronic diseases. In addition, because metabolomics provides direct
small-molecule information, the results can provide immediately
actionable treatment information using readily available small-
molecule nutrients, cofactors, and lifestyle interventions. Our results
show that CFS has an objectively identifiable chemical signature in
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both men and women and that targeted metabolomics can be used
to uncover biological insights that may prove useful for both
diagnosis and personalized treatment.

Results
Demographics. The 84 subjects in this study were recruited from
51 zip codes around the United States and Canada (SI Appendix,
Fig. S1). Eighty subjects were from California. All CFS subjects
met the 2015 diagnostic criteria published by the IOM (4), the
Canadian working group (8), and Fukuda et al. (9). The IOM
criteria are listed in Box 1. Although the IOM has suggested the
use of the new name, “systemic exertion intolerance disease”
(SEID), we will use the term “CFS” to refer to the same disease
meeting the above criteria. The average age of men with CFS in
this study was 53 (±2.8) (Table 1). The average age of the
women with CFS was 52 (±2.5). The average age of onset was
30 (±2.6) y for the men and 33 (±2.3) y for the women. The
average duration of illness was 21 (±3.0) y for men and 17
(±2.3) y for women. The Karnofsky quality of life performance

score (10) for men was 62 (±3.2) and 54 (±3.3) for women
(Table 1).

A Homogeneous Metabolic Response to Heterogeneous Triggers.
Although the current study was not designed to examine the
role of different triggering events, we collected some basic data.
Possible triggering events fell broadly into five groups: biological
(viral, bacterial, fungal/mold, and parasitic infections), chemical
exposures, physical trauma, psychological trauma, and unknown.
The specific biological and chemical exposures and the precise
nature of the physical and psychological traumas were diverse,
numbering more than a dozen in just this small sample. Several
patients had multiple triggers that converged in the same year.
Although biological triggers were most common, no single in-
fectious agent or other stressor was statistically more prevalent,
and comprehensive testing for biological exposures in the control
group was beyond the scope of this study.
Despite the heterogeneity of triggers, the cellular response to

these environmental stressors in patients who developed CFS was
homogeneous and statistically robust. These data supported the
notion that it is the unified cellular response, and not the specific
trigger, that lies at the root of the metabolic features of CFS.

Metabolomics Revealed a Chemical Signature of CFS. Multivariate
analysis was used to identify the pattern of chemical abnormal-
ities in CFS compared with healthy controls. In the three-
dimensional plot of the results (Fig. 1 A and B), we found that
both males and females with chronic fatigue had a chemical
signature that was distinct from healthy controls. The relative
pathway impact and statistical significance were visualized in Fig.
1 C and D. Diagnostic and personalized metabolites are illus-
trated in Fig. 1E. The nine biochemical pathway disturbances
that were common to both males and females with CFS were
visualized in a Venn diagram (Fig. 1E). Eleven pathways were
represented by metabolite disturbances that showed a degree of
sex specificity. The biochemical pathways and metabolites that
were altered in CFS were then ranked and tabulated (Tables 2 and
3 and SI Appendix, Figs. S2A and B and S3 A and B) and visualized
by Cytoscape pathway analysis (SI Appendix, Fig. S4 A and B). The
dominant finding from the pathway analysis was that sphingolipid
abnormalities constituted close to 50% of all of the metabolic
disturbances associated with CFS in both males and females.
Phospholipid abnormalities constituted 16% of the metabolic
disturbances in males and 26% in females (Tables 2 and 3).

Box 1

Institute of Medicine Diagnostic Criteria for Chronic
Fatigue Syndrome

Diagnosis requires that the patient have the following
three symptoms:

1 A substantial reduction or impairment in the ability to
engage in preillness levels of occupational, educational,
social, or personal activities, which persists for more than
6 mo and is accompanied by fatigue, which is often
profound, is of new or definite onset (not lifelong), is not
the result of ongoing excessive exertion, and is not
substantially alleviated by rest;

2 Postexertional malaise*; and
3 Unrefreshing sleep*
At least one of the two following manifestations is also required:
1 Cognitive impairment* or
2 Orthostatic intolerance

*Frequency and severity of symptoms should be assessed. The diagnosis
should be questioned if patients do not have these symptoms at least
half of the time with moderate, substantial, or severe intensity.

Table 1. Demographics

Males Females

Chronic fatigue Controls Chronic fatigue Controls

Parameters Mean (SEM) Range Mean (SEM) Range P Mean (SEM) Range Mean (SEM) Range P

Subject number, n = 84 22 18 23 21
Age, y 53 (2.8) 21–67 53 (3.5) 23–69 ns 52 (2.5) 20–67 48 (2.8) 25–69 ns
Age of onset, y 30 (2.6) 13–54 n/a n/a n/a 33 (2.3) 7–52 n/a n/a n/a
Duration of Illness, y 21 (3.0) 3–49 n/a n/a n/a 17 (2.3) 2–40 n/a n/a n/a
Karnofsky performance score 62 (3.2) 30–90 100 (0) 100 4 × 10−13 54 (3.3) 30–90 100 (0.5) 90–100 3 × 10−16

Number of medications 4.1 (0.9) 0–16 0.2 (0.2) 0–3 0.0005 4.6 (0.9) 0–20 0.3 (0.1) 0–2 6 × 10−5

Years of educationa 16 (0.8) 8–21 18 (0.9) 10–25 ns 16 (0.6) 9–21 16 (0.8) 11–25 ns
BMI 25.0 (0.7) 17–31 26.7 (0.8) 21–34 ns 24.6 (1.2) 18–44 23.8 (0.8) 19–32 ns
Ethnicity
White/non-Hispanic 22 16 ns 22 19 ns
Hispanic 0 2 0 1
Asian 0 0 0 1
Native American 0 0 1 0
African American 0 0 0 0

aYears of education: High school = 12; AA = 14; bachelor’s = 16; master’s = 18; JD = 19; MD, DO, or ND = 20; PhD = 21; MD–PhD = 25.
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Metabolites Correlated with the Clinical Severity of CFS. We next
examined how each of the top 25 metabolite abnormalities was
related to clinical functional status by Spearman correlation
analysis. Each of these metabolites was found to have false dis-
covery rates (FDRs) of less than 10% (SI Appendix, Table S1 A
and B). A list of the top 61 metabolites appears in SI Appendix,
Table S1 C and D. Twenty-one of the top 25 (84%) discriminating
metabolites were low. These findings were consistent with the
notion that CFS is a coordinated hypometabolic state.

Sphingolipids and Glycosphingolipids Were Decreased. The largest
disturbances in the chemical signature of CFS were produced by
widespread decrease in plasma sphingo- and glycosphingolipids
(Fig. 1 C and D and Tables 2 and 3). Thirty molecular species of
sphingolipids were decreased in males, and 21 were decreased in

females. Sphingolipid and glycosphingolipid abnormalities explained
55% of the metabolic impact in males and 44% in females (Tables
2 and 3). Measured glycosphingolipids included glucosyl- (GC),
dihexosyl- (DHC), and trihexosyl- (THC) ceramides. In males,
over 50% (16/30) of the sphingolipids that were decreased were
ceramides, and 47% (14/30) were sphingomyelin species. In
females, 86% (18/21) were ceramides and 14% (3/21) were
sphingomyelins in females (SI Appendix, Table S1 A–D). In gen-
eral, females with chronic fatigue retained more sphingomyelin
species in the normal range than males. The low sphingolipid
profile in CFS appears to be an adaptive response that is opposite
to the increased sphingolipids observed in metabolic syndrome
(11) and the acute cell danger response (CDR) (7) and ultimately
may represent a fundamental response to oppose the spread of
persistent viral and intracellular bacterial infections.
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Fig. 1. Metabolomic diagnosis of CFS. (A) Males. (B) Females. Multivariate analysis using PLSDA clearly distinguished controls and patients with chronic
fatigue in both males and females. (C) Biochemical pathway impact analysis—males, The top five pathway disturbances in males were responsible for 82%
of the metabolic impact. These were sphingolipids (49%); phospholipids (16%); P5C, Arg, and proline (Pro) (7%); glycosphingolipids (6%); and cholesterol
(4%). (D) Females. The top six pathway disturbances in females were responsible for 83% of the metabolic impact. These were sphingolipids (35%);
phospholipids (26%); glycosphingolipids (9%); purines (5%); microbiome (5%); and P5C, Arg, and Pro (3%). (E) Metabolic pathways disturbed in CFS. A
total of 20 pathways were disturbed in males and females with CFS. Nine of these were common to both, and 11 showed gender differences. (F) Diagnostic
and individualized metabolite abnormalities—females. The number of abnormal metabolites that were diagnostic for CFS, as determined by multivariate
analysis, is indicated in green. The number of metabolites that are abnormal (≥2 SD above or below the control mean) but are not specifically characteristic
of CFS is indicated in red.
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Phospholipids Were Decreased. Several plasma phosphatidylcho-
line (PC) phospholipids were decreased in both males and fe-
males with CFS (Tables 2 and 3). In contrast, we found that a
very specific molecular species of phospholipid, PC(18:1/22:6),
containing the essential omega 3 fatty acid docosahexaenoic acid
(DHA, C22:6) and oleic acid (C18:1) was increased. This pattern
is opposite to that seen in response to acute infection and the
CDR (12) and metabolic syndrome (13).

Purines Were Decreased. Plasma uric acid was decreased in males
with CFS (Table 2, Males). Uric acid is the end product of purine
metabolism and an important antioxidant molecule (14, 15).
Plasma adenosine was decreased in females (Table 3, Females).
Plasma adenosine is produced from ATP and ADP released
from cell surface ectonucleotidases, and by S-adenosylhomo-
cysteine hydrolase (SAHH), during acute infection, inflamma-
tion, or stress (16, 17). The decrease in plasma purines in CFS is
consistent with decreased synthesis and/or turnover (flux) of
ATP and GTP and decreased reserve capacity caused in part by a
generalized decrease in the ability to restore high-energy phos-
phate stores after exertion.

Aromatic Amino Acid Metabolites from the Microbiome Were Decreased.
Plasma 4-hydroxyphenyllactic acid (HPLA) was decreased in males
with CFS (Table 2, Males). Plasma phenyllactic acid (PLA) was
decreased in females (Table 3, Females). HPLA is a microbiome
metabolite of tyrosine. PLA is a microbiome metabolite of phe-
nylalanine. This pattern is also opposite of what is found during
acute inflammation and infection (18).

Flavin Adenine Dinucleotide (FAD) Was Decreased. Plasma FAD was
decreased in both males and females with CFS (Tables 2 and 3).
FAD is synthesized from riboflavin (vitamin B2) and ATP. The
gastrointestinal absorption, distribution, and transporter-medi-
ated uptake of FAD are carefully regulated during health and
disease (19). FAD is mobilized from tissues, increased in the
plasma, and renal secretion is increased under conditions of
stress or infection (20). FAD is an important cofactor for fatty
acid oxidation and sterol synthesis and is required for activation
and oxidation of vitamin B6 (pyridoxine); lipoic acid metabolism
(E3 subunit) needed for pyruvate, alpha-ketoglutarate, and
branched chain amino acid oxidation; vitamin A activation;
5-methyltetrahydrofolic acid synthesis; niacin and NAD synthe-
sis; and glutathione reduction. Functional deficiency of riboflavin
can be produced by dietary and environmental factors (21). Severe
riboflavin deficiency can present with a plasma acyl-carnitine

pattern similar to multiple acyl-CoA dehydrogenase deficiency
(MADD), also known as glutaric aciduria type II (GAII) (22).
GAII-like acyl-carnitine abnormalities did not appear in CFS
patients.

Cholesterol and Bile Acid Synthesis Through the Lathosterol Pathway
Were Decreased. Plasma lathosterol was decreased in both males
and females with CFS (Tables 2 and 3). Total plasma cholesterol,
desmosterol, cortisol, and aldosterone were normal in both
males and females with CFS. Two pathways are used in mam-
malian cells to synthesize cholesterol. These are the Kandutsch–
Russell (K–R) pathway through lathosterol and the Bloch
pathway through desmosterol (23). The K–R pathway is pre-
ferred for cholesterol synthesis in the brain, heart, skeletal
muscle, and skin, making up as much as 80% of cholesterol
synthesis in these tissues under baseline conditions (23). The
Bloch pathway is normally used preferentially in certain
metabolic stress-response tissues like the gonads, spleen, ad-
renal glands, kidney, and adipose tissue. Under baseline
conditions of health, the liver uses a nearly equal blend of
Bloch and K–R pathways. Our data are consistent with in-
creased flux through the desmosterol pathway to maintain
normal cellular levels of cholesterol. The desmosterol pathway
corresponds to the stress-inducible arm of de novo cholesterol
and sterol synthesis.
Plasma chenodeoxycholic acid (CDCA) was decreased in fe-

males (Table 3, Females). CDCA is a primary bile acid made
from cholesterol. Decreased cholesterol flux can result in de-
creased substrate for bile acid synthesis needed for normal fat
digestion and microbiome signaling (24). The absence of ade-
quate bile acid delivery can lead to a loss in intestinal mucosal
integrity and leaky gut via a cascade of events stemming in part
from disrupted farnesoid X receptor signaling (25).

Pyrroline-5-Carboxylate and Arginine Were Increased. Pyrroline-5-
carboxylic acid (P5C) was increased in both males and females
with CFS (Tables 2 and 3). P5C production is a well-studied
response to stress in plants (26) and mammals (27, 28). P5C can
be produced by the stress-induced oxidation of proline and
hydroxyproline from collagen turnover via the enzyme proline
oxidase or from glutamate oxidation via P5C synthase (P5CS).
P5C is converted to glutamate semialdehyde (GSA) non-
enzymatically, then to ornithine under stress conditions. This
reaction is catalyzed by what is often considered the reverse
reaction of the mitochondrial enzyme, ornithine amino trans-
ferase (OAT). Hydroxyproline was increased in females with

Table 2. Biochemical pathway abnormalities in CFS, males

No. Pathway name

Measured
metabolites

in the
pathway, N

Expected
pathway

proportion,
P = N/431

Expected
hits in

sample of
61, P * 61

Observed
hits in the
top 61

metabolites

Fold
enrichment,

obs/exp

Impact,
sum
VIP
score

Fraction of
impact

explained, %
of 114.7 Increased Decreased

1 Sphingolipids 72 0.167 10.2 30 2.9 55.7 49% 0 30
2 Phospholipids 76 0.176 10.8 9 0.8 18.0 16% 2 7
3 P5C, Arg, Ornithine, Pro 6 0.014 0.8 4 4.7 7.5 7% 3 1
4 Glycosphingolipids 13 0.030 1.8 3 1.6 7.2 6% 0 3
5 Cholesterol, nongonadal steroids 15 0.035 2.1 3 1.4 5.0 4% 0 3
6 Branch chain amino acids 10 0.023 1.4 3 2.1 4.9 4% 0 3
7 Purines 19 0.044 2.7 2 0.7 3.3 3% 0 2
8 Microbiome metabolism 20 0.046 2.8 1 0.4 2.1 2% 0 1
9 Vitamin B2 (riboflavin) 2 0.005 0.3 1 3.5 2.1 2% 0 1
10 Serine, 1-carbon metabolism 5 0.012 0.7 1 1.4 1.9 2% 1 0
11 SAM, SAH, methionine, glutathione 13 0.030 1.8 1 0.5 1.9 2% 1 0
12 Very long chain fatty acid oxidation 2 0.005 0.3 1 3.5 1.8 2% 0 1
13 Propiogenic amino acids 2 0.005 0.3 1 3.5 1.6 1% 0 1
14 Threonine metabolism 4 0.009 0.6 1 1.8 1.6 1% 1 0
Subtotal 8 53
Total 61
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chronic fatigue (Table 3, Females). Hydroxyproline is converted
to proline, then to P5C and GSA, which is then used as the
precursor for arginine (Arg) synthesis from ornithine in the
epithelium of the small intestine under conditions of decreased
calorie or protein intake (28). Another metabolic fate of hy-
droxyproline is glyoxylate, which can be transaminated in mito-
chondria to produce glycine and metabolized in peroxisomes to
oxalate and peroxide for cell defense and innate and antiviral
immunity (29).
Plasma Arg levels were also increased in chronic fatigue males

and females. Arg is both a source of urea by arginase in the urea
cycle, but more importantly, it is an activator of N-acetylglutamate
(NAG) synthesis. NAG is the obligate activator of carbamoyl
phosphate synthetase I (CPS-I). CPS-I is required for the intro-
duction of ammonia into the urea cycle via the synthesis of cit-
rulline from ornithine and carbamoylphosphate by ornithine
transcarbamoylase (OTC). Citrulline, ornithine, proline, gluta-
mine, and glutamate levels were all normal. Under stress condi-
tions, proline from collagen breakdown is shunted to Arg synthesis
to spare nitrogen from other amino acids and limit wasting during
periods of decreased calorie and or protein intake. Increased Arg
might theoretically be used for nitric oxide (NO) synthesis and
contribute to vascular headaches or migraines, however the
linkage between Arg and migraine is complex (30), and this
use would run counter to the nitrogen sparing use of Arg
needed during times of environmental stress. Another meta-
bolic fate of Arg is the NO inhibitor, asymmetric dimethyl-
arginine (ADMA). CFS patients did not have an increase in
plasma ADMA. Increased Arg is associated with a decreased
risk of infection after operative stress (31) and is used to
synthesize the antimicrobial molecule agmatine under condi-
tions of active infection (32).

Branch Chain Amino Acid Metabolic Intermediates Were Decreased.
2-Hydoxyisocaproic acid (HICA) is derived from alpha ketoiso-
caproic acid, the transamination product of leucine. HICA was
decreased in both males and females with CFS. This is consistent
with decreased gut absorption, increased renal excretion, increased
mitochondrial oxidation, or a combination of the three. HICA
has antibacterial and antifungal activity (33).

Diagnostic vs. Personalized Metabolic Disturbances.We classified all
of the metabolite abnormalities in each patient as either being one of
the abnormalities that defined CFS patients as a group (Fig. 1F,
Tables 2 and 3, and SI Appendix, Table S1 A–D) or as abnormalities
that differed from controls but did not contribute to the CFS di-
agnosis. CFS patients had an average of 10 (±1.0) metabolite ab-
normalities that contributed to the CFS diagnosis and 30 (±2.0)
metabolites that were abnormal but noncontributory for purposes of
CFS diagnosis (Fig. 1F and SI Appendix, Fig. S5). This means that
75% of the chemical abnormalities identified by metabolomic
analysis were personalized, and 25% provided diagnostic group in-
formation. Our clinical experience suggests that symptom improve-
ments can be achieved more reliably by addressing the personalized
abnormalities rather than by assuming a chemical abnormality
without actual measurement.

Assessment of Metabolomics as a Diagnostic Test in CFS. After
identifying over 60 metabolites that differed between CFS and
controls in both males and females (SI Appendix, Table S1 A–D),
we set out to find smaller sets of analytes that could be used for
diagnosis. Samples of 5–15 of the top 60 metabolites were
manually selected to broadly interrogate several of the discrimi-
nating biochemical pathways (Tables 2 and 3) in males and fe-
males. The performance of each classifier set of metabolites was
then tested by area under the receiver operator characteristic
(AUROC) curve analysis. We found that the exact specification of
metabolites in the classifier was flexible. Using both forward se-
lection and backward elimination methods (34), we found that
once a set of 5–15 analytes was found, the addition or removal of
one or a few analytes had little effect on the overall quality of the
classifier. In males, we found a set of 8 analytes performed well
(Fig. 2A). In females, we found a set of 13 analytes performed well
(Fig. 2B). We found that even single-analyte classification methods
performed surprisingly well in this small sample of 84 subjects
(Table 4). However, single biomarkers are biologically implausible
as a diagnostic test for complex diseases like CFS and are likely to
perform poorly in larger populations. By using classifiers con-
structed from 5 to 15 metabolites, natural biological variation is
more readily accommodated and diagnostic accuracy is more
robust. We also performed a principal components analysis (PCA)

Table 3. Biochemical pathway abnormalities in CFS, females

No. Pathway name

Measured
metabolites

in the
pathway, N

Expected
pathway

proportion,
P = N/421

Expected
hits in

sample of
61, P * 61

Observed
hits in the
top 61

metabolites

Fold
enrichment,

obs/exp

Impact,
sum VIP
score

Fraction
of impact
explained,
% of 117.3 Increased Decreased

1 Sphingolipids 71 0.169 10.29 21 2.0 41.1 35% 0 21
2 Phospholipids 77 0.183 11.16 17 1.5 31.0 26% 6 11
3 Glycosphingolipids 12 0.029 1.74 5 2.9 11.1 9% 0 5
4 Purines 20 0.048 2.90 3 1.0 6.0 5% 0 3
5 Microbiome metabolism 21 0.050 3.04 3 1.0 5.3 5% 2 1
6 Fatty acid oxidation and

synthesis
36 0.086 5.22 2 0.4 4.0 3% 1 1

7 P5C, Arg, Ornithine, Pro 6 0.014 0.87 2 2.3 3.6 3% 2 0
8 Cholesterol, nongonadal

steroids
16 0.038 2.32 1 0.4 2.5 2% 0 1

9 Collagen/hydroxyproline
metabolism

2 0.005 0.29 1 3.5 2.4 2% 1 0

10 Vitamin B2 (riboflavin) 2 0.005 0.29 1 3.5 2.1 2% 0 1
11 Bile salt metabolism 7 0.017 1.01 1 1.0 1.9 2% 0 1
12 Endocannabinoids 2 0.005 0.29 1 3.5 1.7 1% 0 1
13 Branch chain amino acids 10 0.024 1.45 1 0.7 1.6 1% 0 1
14 Vitamin B12 (cobalamin) metabolism 2 0.005 0.29 1 3.5 1.6 1% 0 1
15 Amino-sugar, galactose,

and nonglucose
4 0.010 0.58 1 1.7 1.5 1% 1 0

Subtotal 13 48
Total 61
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to identify orthogonal components of the metabolomic signature
(SI Appendix, Table S4 A and B and Fig. S7 A and B). However,
we have found PCA to be less robust than partial least squares
discriminant analysis (PLSDA) and random forest (RF) analysis
in identifying diagnostically useful metabolites in independent
clinical settings.

Metabolic Similarities Between CFS and Dauer. Many of the path-
ways and metabolites that were abnormal in CFS are also
known to be features of dauer, a well-studied, long-lived sur-
vival and persistence state triggered by environmental stress
(35, 36) (Table 5). Interestingly, we found that the direction of
CFS abnormalities was opposite to metabolic syndrome (37)
and opposite to the metabolic response to infection, inflam-
mation, or environmental stress that has been called the CDR
(7). For example, cholesterol, phospholipid, sphingolipid, and
purine metabolism are all decreased in CFS and dauer but are
increased in metabolic syndrome and the stereotyped CDR
(Table 5). These facts suggest that CFS is an evolutionarily
conserved, genetically regulated, hypometabolic state similar to
dauer that permits survival and persistence under conditions
of environmental stress but at the cost of severely curtailed
function and quality of life.

Discussion
The purpose of this study was to test the utility of targeted
metabolomics in the diagnosis of CFS. We found that patients
meeting the criteria for CFS recommended by the IOM (4),
Canadian working group (8), and Fukuda et al. (9) had ob-
jective chemical abnormalities that clearly distinguished them
from controls. In addition, pathway analysis revealed that all
nine of the pathways disturbed in both men and women with
CFS were related to the CDR (7). However, in contrast to an
acute CDR, in which plasma sphingolipids and phospholipids
are increased, these pathways were decreased, suggesting a
postexposure adaptation or mitocellular hormesis (38, 39) in

response to pathologically persistent or recurrent cell danger
signaling (6, 7).

Hypometabolism, Dauer, and CFS. Our results show that the met-
abolic features of CFS are consistent with a hypometabolic state.
Sphingolipids, glycosphingolipids, phospholipids, purines, micro-
biome aromatic amino acid and branch chain amino acid metab-
olites, FAD, and lathosterol were decreased. The decreases in
these metabolites correlated with disease severity as measured by
Karnofsky scores (SI Appendix, Table S1 A–D). Much research has
been done on the hypometabolic phenotype in other biologic
systems, including dauer (35), diapause (40), hibernation (41),
estivation (42), torpor (43), ischemic preconditioning (44), ER
stress (45), the unfolded protein response (46), autophagy (47, 48),
and caloric restriction (49). Dauer, which means persistence or
long-lived in German, is an example of one well-studied system.
The developmental stage of dauer is a hypometabolic state ca-
pable of living efficiently by altering a number of basic mito-
chondrial functions, fuel preferences, behavior, and physical
features. Dauer is comprised of an evolutionarily conserved and
synergistic suite of metabolic and structural changes that are
triggered by exposure to adverse environmental conditions. Entry
into dauer confers a survival advantage in harsh conditions (35).
When the dauer response is blocked by certain mutations (dauer
defectives), animals are short-lived when exposed to environ-
mental stress. These mutations show that the latent ability to
enter into a hypometabolic state during times of environmental
threat is adaptive, even though it comes at the cost of decreasing
the optimal functional capacity. Similar to dauer, CFS appears
to represent a hypometabolic survival state that is triggered by
environmental stress. The metabolic features of CFS and dauer
correspond to the same pathways that characterize the acute CDR
and metabolic syndrome (50) but are regulated in the opposite
direction. For example, cholesterol, phospholipids, and uric acid
are often elevated in the acute CDR and metabolic syndrome, but
these metabolites were decreased in CFS patients. A prediction
based on these findings is that patients with CFS would be more
resistant to the constellation of hypertension, dyslipidemia, central
obesity, and insulin resistance that increase all-cause mortality
associated with metabolic syndrome (37), but at the cost of sig-
nificant long-term disability, pain, and suffering.

The Importance of Mitochondria, Redox, and NADPH Metabolism in
Chronic Fatigue.All of the metabolic abnormalities that we identified
in CFS were either directly regulated by redox or the availability
of NADPH. About 60% of NADPH is produced by the pentose
phosphate pathway under baseline conditions. The other 40% is
produced by the combined flux through five NADP+ dependent
enzymes: (i) malic enzyme (ME), (ii) isocitrate dehydrogenase
(IDH), (iii) glutamate dehydrogenase (GDH), (iv) nicotinamide
nucleotide transhydrogenase (NNT), and (v) methylene tetrahy-
drofolate dehydrogenase 2-like protein (MTHFD2L). Each of
these enzymes has at least one mitochondrial isoform and is
known to be up-regulated under conditions of environmental or
developmental stress. It has recently been shown that mito-
chondrial MTHFD2L is responsible for producing 20–40% of
cellular NADPH by the oxidation of methylene tetrahydrofolic
acid to 10-formyl tetrahydrofolate (51). These data show that
folates are important not only in methylation reactions but also
in regulating intracellular redox and NADPH levels (SI Appendix,
Fig. S6). A number of single nucleotide polymorphisms (SNPs)
have been identified in the MTHFD2L gene that correlate with
the CDR and interleukin 1β (IL1β) production triggered by
smallpox vaccination (52). Mitochondrial pools of NADPH are in
continuous communication with NADH levels through the en-
zyme NNT. Therefore, NADPH acts as a global barometer of
cellular fuel status by interrogating both mitochondrial electron
(NADH) consumption and the availability of cytoplasmic reducing
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Fig. 2. The diagnostic performance of targeted metabolomics in CFS;
AUROC curve analysis. (A) Males. Eight metabolites were selected and tested
by bootstrap resampling as an example of one possible multianalyte di-
agnostic classifier. Training set overfitting was minimized by using RF de-
cision tree analysis (61). The eight metabolites selected were phosphatidyl
choline PC(16:0/16:0), glucosylceramide GC(18:1/16:0), 1-P5C, FAD, pyroglu-
tamic acid (also known as 5-oxoproline), 2-hydroxyisocaproic acid (HICA),
L-serine, and lathosterol. The diagnostic accuracy measured as the AUROC
curve was 0.94 [95% confidence interval (CI), 0.84–1.0]. (B) Females. Thirteen
metabolites were selected as a diagnostic classifier in females as described
above. The 13 metabolites were THC(18:1/24:0), phosphatidyl choline PC
(16:0/16:0), hydroxyproline, ceramide(d18:1/22:2), lathosterol, adenosine,
phosphatidylinositol PI(16:0/16:0), FAD, 2-octenoylcarnitine, phosphatidyl
choline plasmalogen PC(22:6/P18:0), phosphatidyl choline PC(18:1/22:6), 1-P5C,
and CDCA. The diagnostic accuracy measured as the AUROC curve was 0.96
(95% CI, 0.86–1.0). n = 18 control males and 22 CFS males, and n = 21 control
females and 23 CFS females.
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equivalents as NADPH. When mitochondrial electron transport
decreases for any reason, fewer molecules of oxygen are converted
to water (H2O) by cytochrome c oxidase. If capillary delivery of
oxygen to the cell is unchanged, the concentration of dissolved
oxygen rises in the cell like water in a bowl in response to in-
stantaneous decreases in mitochondrial oxygen consumption. This
activates scores of enzymes that are kinetically regulated by the
availability of dissolved oxygen and can act as oxygen sensors.
Some of these include NADPH oxidases like Nox4 (53) that make
hydrogen peroxide (H2O2) from the excess diatomic oxygen (O2)
to initiate the oxidative shielding response (6). When reduced
(NADPH) and total (NADPH plus NADP+) pools are low, sterol,
fatty acid, protein, and nucleotide synthesis fall to baseline survival
levels. When NADPH levels are higher, metabolism is shifted
from persistence to normal cell function and growth, anabolic
pathways are stimulated, biomass is created, and carbons and
electrons are stored as biopolymers for cell growth and repair in
the form of lipids, protein, glycogen, glycans, and nucleic acids.
It is important to emphasize that NADPH is neither the

problem nor the solution by itself. It is a messenger and cofactor.
NADPH cannot work without the availability of hundreds of
carbon skeletons of intermediary metabolism needed to carry out
the message—the signal that fuel stores are either replete or
limiting and metabolism must be adjusted accordingly. Specifi-
cally, NADPH cannot be simply added as a nutritional supple-
ment to produce the tidal change in metabolism needed to shift
the dauer state of CFS to normal health. Incremental improve-
ments in NADPH production could theoretically be supported
by interventions directed at folate, B12, glycine, and serine pools,
and B6 metabolism (SI Appendix, Fig. S6), however the safety
and efficacy of these manipulations have not yet been tested in a
rigorously designed clinical trial. Ultimately, effective treat-

ments for CFS are likely to be achieved by careful attention to
nutrition, metabolism, triggers, stressors, and physical activity
as an integrated system, combined with a systems biological
understanding of the triggers of the CDR (7) and dauer entry
and exit (35).

Conclusions
CFS has a chemical signature that can be identified using targeted
plasma metabolomics. Receiver operator characteristic (ROC)
curve analysis showed a diagnostic accuracy that exceeded 90%.
The pattern and directionality of these changes showed that CFS
is a conserved, hypometabolic response to environmental stress
similar to dauer (35). Only about 25% of the metabolite distur-
bances found in each person were needed for the diagnosis of
CFS. About 75% of the metabolite abnormalities were unique to
the individual and useful in guiding personalized treatment. The
study of larger cohorts from diverse geographical areas, and
comparison with related medical disorders like depression and
posttraumatic stress disorder, will be needed to validate the uni-
versality and specificity of these findings. The finding of an ob-
jective chemical signature in CFS helps to remove diagnostic
uncertainty, will help clinicians monitor individualized responses
to treatment, and will facilitate multicenter clinical trials.

Materials and Methods
Patients and Controls. This study was approved the by the University of Cal-
ifornia, San Diego Institutional Review Board (IRB Project 140072) and con-
formed to the World Medical Association Declaration of Helsinki: Ethical
Principles for Medical Research Involving Human Subjects (54). Patients and
controls were recruited prospectively over a 1-y period, June 2014–May 2015.
Signed informed consent was obtained from all subjects. All CFS patients met
the 2015 IOM (4), Canadian (8), and Fukuda (9) diagnostic criteria for CFS.
Healthy controls were age- and sex-matched volunteers without CFS. The total

Table 4. Diagnostic accuracy of targeted plasma metabolomics in CFS

Sex Classifiers AUROC* 95% CI rdCV† accuracy
Permutation‡

P value 2 × 2§ accuracy 2 × 2 sensitivity 2 × 2 specificity

Males 8-analyte example¶ 0.94 0.84–1.0 0.84 0.001 0.90 0.91 0.89
1-analyte example# 0.71 0.50–0.88 0.62 0.009 0.72 0.73 0.72

Females 13-analyte examplejj 0.96 0.87–1.0 0.90 0.001 0.93 0.91 0.95
1-analyte example# 0.68 0.42–0.86 0.58 0.009 0.68 0.70 0.67

n = 18 control males and 22 CFS males, and n = 21 control females and 23 CFS females.
*AUROC, area under the receiver operator curve reflects the overall accuracy of diagnosis using these analytes.
†rdCV, repeated random subsample (2/3 in, 1/3 out) double cross-validation.
‡Permutation P values represent the probability that the RF classification of cases and controls using the specified analytes could be obtained by chance.
§Values calculated by standard 2 × 2 contingency table analysis.
¶8:analytes in males, phosphatidyl choline PC(16:0/16:0), glucosylceramide GC(18:1/16:0), 1-P5C, FAD, pyroglutamic acid (also known as 5-oxoproline), HICA,
L-serine, and lathosterol.
#1-analyte: phosphatidyl choline PC(16:0/16:0).
jj13-analytes in females: THC(18:1/24:0), phosphatidyl choline PC(16:0/16:0), hydroxyproline, ceramide(d18:1/22:2), lathosterol, adenosine, phosphatidylinositol
PI(16:0/16:0), FAD, 2-octenoylcarnitine, phosphatidyl choline plasmalogen PC(22:6/P18:0), phosphatidyl choline PC(18:1/22:6), 1-P5C, and CDCA.

Table 5. Metabolic similarities and contrasts between CFS and Dauer, cell danger and metabolic syndrome

Plasma metabolites CFS Dauer CDR (7) Metabolic syndrome

Sphingolipids Decreased (M + F)* Decreased (62) Increased (63) Increased (64)
Glycosphingolipids Decreased (M + F) Decreased (62) Increased (63) Increased (65)
Phospholipids, most species Decreased (M + F) Decreased (66) Increased (67) Increased (68)
PC(18:1/22:6)—Oleoyl/DHA phospholipids Increased (M + F) No data Decreased (67) Decreased (13)
Cholesterol, sterol synthesis Decreased (M + F) Decreased (69) Increased (70) Increased (71)
Purines Decreased (M + F) Decreased (72) Increased (73) Increased (74)
Uric acid Decreased (M) N/A† Increased (75) Increased (76)
P5C/Arg Increased (M + F) No data Decreased (77) No data
FAD/Riboflavin Decreased (M + F) Decreased (72) Increased (20) No data

*F, females only; M, males only; M + F, males and females.
†N/A, the end products of purine metabolism in worms are glyoxylate and ammonia, not uric acid.
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number of subjects analyzed in this study was 84. This included 23 females and
22 males with CFS and 18 male and 21 female controls.

Metabolomics. Targeted, broad-spectrum, chemometric analysis of 612 me-
tabolites from 63 biochemical pathways was performed as described (55) with
minor modifications. Over 420 metabolites were detectable in all plasma
samples. Regular quality control experiments showed metabolite AUC cor-
relations over 0.98 and relative SDs of 9–12% (SI Appendix, Tables S2 and
S3). See SI Appendix, SI Methods for details.

Data Analysis.Metabolomic datawere log-transformed, scaled by control SDs,
and analyzed by multivariate PLSDA, PCA, t test, univariate ANOVA with
pairwise comparisons, and post hoc correction for multiple hypothesis test-
ing using Fisher’s least significant difference method in MetaboAnalyst (56),
or the FDR method of Benjamini and Hochberg (57). Metabolites with var-
iable importance in projection (VIP) scores determined by PLSDA that were
greater than 1.5 were considered significant. Metabolite correlations with
Karnofsky performance scores were calculated by Pearson parametric and
Spearman nonparametric methods implemented in Stata (Stata/SE12.1,
StataCorp), Prism (Prism 6, GraphPad Software), or R. Significant metabolites
were grouped into pathways and their VIP scores summed to determine
the rank-ordered significance of each biochemical pathway. Sets of 5–15
metabolites were selected manually from the top 60 significant metabolites

as candidate diagnostic classifiers using two multivariate methods: RFs
(58) and linear support vector machine (SVM) implemented in Metabol-
Analyst (56). The diagnostic performance of the selected classifiers was
then visualized and quantified by AUROC curve analysis (34). Classifier
robustness was estimated by repeated double cross-validation (rdCV) (59)
and permutation testing 1,000 times in MetaboAnalyst. Confidence inter-
vals for the ROC curves were calculated by bootstrap resampling. Sensi-
tivity, specificity, accuracy, positive predictive value, negative predictive
value, and number of misclassifications (60) were estimated by conven-
tional 2 × 2 contingency table analysis and P values calculated by Fisher’s
exact test in Prism.
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